OLYMPIADE FRANCOPHONE DE CHIMIE 2013

NIVEAU 2 (élèves de sixième année) - PREMIÈRE ÉPREUVE : REPONSES

5 pts	QUESTION I Vie courante – Pâte dentifrice
5 x 1	Nature de l'agent (1 à 5) : A.3 ; B.5 ; C.2 ; D.1 ; E.4

8 pts	QUESTION II Concentration			
2	a) concentration molaire de la solution stock A :			
	$(0,662 \text{ g} / 294,2 \text{ g/mol}) / 0,250 \text{ L} = 9,00 \times 10^{-3} \text{ mol/L}.$			
2	b) concentration molaire de la solution diluée B :			
	$(9.00 \times 10^{-3} \text{ mol/L} \times 0.010 \text{ L}) / 0.250 \text{ L} = 3.60 \times 10^{-4} \text{ mol/L}.$			
3	c) masse, en mg , de K ₂ Cr ₂ O ₇ à peser pour préparer directement la solution diluée B dans le ballon jaugé de 250 mL :			
	$(3.60 \times 10^{-4} \text{ mol } / 4) \times 294.2 \text{ g/mol} = 2.65 \times 10^{-2} \text{ g} = 26.5 \text{ mg}$			
1	d) précision de la balance à utiliser : 0,1 mg			

5 pts	QUESTION III Loi du gaz parfait					
	Réaction du CO ₂ avec le superoxyde de potassium :					
2	$2 \text{ KO}_2(s) + 1 \text{ CO}_2(g) \rightarrow 1 \text{ K}_2\text{CO}_3(s) + 3/2 \text{ O}_2(g) \text{ ou coeff. } 4, 2, 2, 3$					
3	Masse de KO ₂ nécessaire pour consommer 50,0 L de CO ₂ dans les conditions normales de température et de pression (25°C, sous 1 atm = 101325 Pa) : $n_{CO2} = PV / RT = 1 \times 50,0 / (0,082 \times 298) = 2,046 \text{ moles}$ masse de KO ₂ = 71,1 g/mol × 2,046 mol × 2 = 291 g					

6 pts	QUESTION IV Manipulation de chimie analytique			
	Réactions de précipitation concernées :			
2	a) $Ag^+ + Cl^- \rightarrow AgCl \downarrow \text{ ou } Ag^+ + HCl \rightarrow AgCl \downarrow + H^+$			
2	b) $Zn^{2+} + H_2S \rightarrow ZnS \downarrow + 2 H^+ $ (accepter $Zn^{2+} + S^- \rightarrow ZnS \downarrow$)			
2	Ions présents dans la solution de départ : Ag ⁺ et Zn ²⁺			

8 pts	QUESTION V Thermochimie				
	Réactions concernées (ne pas exiger l'indication de l'état d'agrégation) : - Combustion de l'éthanol :				
1	$C_2H_5OH (l) + 3 O_2 (g) \rightarrow 2 CO_2 (g) + 3 H_2O (l)$ $\Delta H_r = -1368.0 \text{ kJ/mol}$	(1)			
1	- formation de CO ₂ (ou combustion du carbone) :				
	$C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H_f = -393.5 \text{ kJ/mol}$	(2)			
1	- formation de H ₂ O (ou combustion de l'hydrogène) :				
	$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(l)$ $\Delta H_f = -285.8 \text{ kJ/mol}$	(3)			
	- formation de l'éthanol :				
1	$2 \text{ C (s)} + 3 \text{ H}_2 \text{ (g)} + \frac{1}{2} \text{ O}_2 \text{ (g)} \rightarrow \text{C}_2 \text{H}_5 \text{OH (l)}$ $\Delta \text{H}_f = ?$	(4)			
	Enthalpie de formation de l'éthanol :				
4	$\Delta H_f (\acute{e}thanol) = 3 \times (3) + 2 \times (2) - (1)$				
	$= 3 \times (-285,8) + 2 \times (-393,5) - (-1368,0) = -276,4 \text{ kJ/mol}$				

5 pts	QUESTION VI Cinétique chimique		
5x1		Vrai	Faux
	La concentration en réactifs n'a jamais d'influence sur la vitesse d'une réaction chimique.		X
	Une élévation de température augmente la vitesse d'une réaction chimique.	X	
	Un catalyseur positif accélère une réaction chimique.	X	
	Dans une réaction chimique, la vitesse initiale de disparition d'un réactif est égale à la variation de concentration en l'unité de temps au temps t=0.	X	
	Dans une réaction chimique, la vitesse de disparition d'un réactif est toujours constante au cours du temps.		X

6 pts	QUESTION VII Dissociation ionique dans l'eau		
	Pour réaliser la solution, on peut dissoudre dans l'eau les quantités adéquates de		
	MgCl ₂ , K ₂ SO ₄ et NaNO ₃		

6	pts	QUESTION VIII Equilibres acide/base					
		La réaction d'équilibre résultant de la dissolution du gaz ammoniac (NH ₃) dans l'eau est :					
	3	$NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$					
		(attribuer 1 point /3 si la double flèche d'équilibre n'est pas indiquée)					
	3	En conséquence la concentration en ions OH ⁻ augmente.					

8 pt	QUESTION IX Equilibres de solubilité			
2	- l'équation de l'équilibre de solubilité impliqué s'écrit :			
	$PbI_{2}(s) \Rightarrow Pb^{2+}(aq) + 2I^{-}(aq)$ ou $Pb^{2+}(aq) + 2I^{-}(aq) \Rightarrow PbI_{2}(s)$			
3	- l'expression du produit de solubilité K_{ps} est : $K_{ps} = [Pb^{2+}] \times [\Gamma]^2 = 1,4 \times 10^{-8}$			
3	- $[Pb^{2+}] = (0,20/2) \text{ mol/L}$ $[I^-] = (0,20/2) \text{ mol/L}$ PbI ₂ précipitera puisque : $Q = 0,10 \times (0,10)^2 = 10^{-3} >> K_{ps}$			

6 pts	QUESTION X	Structure	e et polarité		
6x1		N	Géométrie	Polaire	Non-polaire
	CH ₄	0	tétraédrique		X
	BF ₃	0	triangulaire		X
	NO ₂ ⁻ (nitrite)	1	coudée	X	
	SO_2	1	coudée	X	
	CO ₂	0	linéaire		X
	NH ₄ ⁺	0	tétraédrique		X

5 pts	QUESTION XI Réactions organiques - Polymères
	-[CH ₂ -CCl ₂ -CH ₂ -CCl ₂ -CH ₂ -CCl ₂ -CH ₂ -CCl ₂] _n -
	déterminer la formule du monomère et donner son nom.
3 2	La formule du monomère est : H ₂ C=CCl ₂ ou CH ₂ =CCl ₂ Son nom dans la nomenclature officielle est : 1,1-dichloroéthène ou 1,1-dichloroéthylène.

8 pts	QUESTION XII Titrage acide/base et formule moléculaire			
1	a) Le composé X est donc un acide (carboxylique)			
	b) Les quantités de matière ou nombres de moles d'atomes de chaque espèce présents dans une mole de molécule X valent :			
1	$-n(C) = 26,68 \times 90,04 / (100 \times 12,01) = 2$			
1	$-n(H) = 2,239 \times 90,04 / (100 \times 1,01) = 2$			
1	$-n(O) = (100-26,68-2,239) \times 90,04 / (100 \times 16) = 71,08 \times 90 / (100 \times 16) = 4$			
1	c) La formule moléculaire de X est donc : C ₂ H ₂ O ₄ HOOC-COOH			
1	d) Le titrage fournit un nombre de protons dissociables H ⁺ de 2			
2	e) La formule de structure développée de X est :			
	но он			
	110			

8 pts	QUESTION XIII Fonctions organiques					
	1 point pour le nom et 1 point pour la formule semi-développée.					
2	a) la déshydratation du n-propanol ou propan-1-ol fournit le propène CH ₃ -CH=CH ₂					
2	b) la déshydratation de l'isopropanol ou propan-2-ol fournit le propène CH ₃ -CH=CH ₂					
2	c) la déshydratation du n-butanol ou butan-1-ol fournit le but-1-ène C ₂ H ₅ -CH=CH ₂					
2	d) la déshydratation du butan-2-ol fournit le but-2-ène CH ₃ -CH=CH-CH ₃ (cis ou trans)					
	(attribuer 1 point sur 2 si les isomères cis et trans ne sont pas mentionnés ; accepter					
	le but-1-ène pour 1 point, même si ce composé n'est pas majoritaire)					

8 pts	QUESTION XIV Réactions organiques						
	(Ne pas exiger l'indication des états d'agrégation)						
	Les équations des réactions de production de l'éthanol s'écrivent :						
	- hydratation de l'éthène en présence d'acide phosphorique comme catalyseur :						
1	$C_2H_4(g) + H_2O(1) \rightarrow C_2H_5OH(1)$						
1	- fermentation alcoolique des sucres : $C_6H_{12}O_6$ (aq) $\rightarrow 2 C_2H_5OH$ (l) $+ 2 CO_2 \uparrow$ (g)						
2	L'équation de la réaction de conversion de l'éthanol en vinaigre à l'air en présence de bactéries de type <i>Acétobacter</i> est :						
	$C_2H_5OH (aq) + O_2 (g) \rightarrow CH_3-COOH (aq) + H_2O (l)$						
2	L'éthanoate d'éthyle (ou acétate d'éthyle) se prépare par réaction de l'éthanol avec l'acide éthanoïque ou acétique dont la formule semi-développée est : CH ₃ -COOH						
	L'équation de cette réaction d'estérification s'écrit :						
2	CH_3 -COOH (l) + C_2H_5OH (l) $\rightarrow CH_3$ -COOC ₂ H_5 (l) + H_2O (l)						

8 pts	QUESTION XV Chimie Organique - Températures d'ébullition							
1	a) La grandeur portée en abscisse est la masse molaire							
	b) Les noms des hydrocarbures correspondant aux points a à h sont :							
2	a : méthane	b : éthane	1 1		d : n-butane			
	e: n-pentane	f : n-hexane	g : n-hepta	ne	h : n-octane			
	(accepter les noms sans n-)							
	c) L'origine de la variation de t _{eb} observée pour les alcanes linéaires est :							
	augmentation des inter							
1	l'allongement de la cha		e Vrai					
	augmentation du nombre de liaisons hydrogène (ponts							
1	hydrogène) avec l'allor	ngement de la c	t de la chaîne					
	d) Sur le graphique, les trois composés ci-dessous se placeront aux endroits suivants							
	(abscisse et gamme de température) :							
	Composé	Abscisse	t	éb (°C)				
2x0,5	Ethanol	46			>> 20			
2x0,5	oxyde de diéthyle ou éthoxyéthane	74		≈ 40				
2x0,5	acide éthanoïque	60			>> 50			