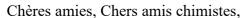


OLYMPIADE FRANCOPHONE DE CHIMIE 2025 NIVEAU I ELEVES DE 5^{eme} ANNEE

Avec le soutien de :

L'ACLg, Association des Chimistes de l'ULiège L'ACL, Association des Chimistes de l'UCL L'AScBr, Association des scientifiques de l'ULB



Nous vous remercions de votre participation à cette Olympiade qui mènera l'un ou l'une d'entre vous à l'EOES (European Olympiad of Experimental Science). Bon travail!

INSTRUCTIONS

Cette première épreuve est cotée sur 100 points et comprend 17 questions.

Vous avez deux heures pour répondre.

Vous pouvez utiliser une machine à calculer non programmable mais aucun document personnel.

	Ia	IIa	IIIa	IVa	Va	VIa	VIIa	O
	1 2,1							2
1	H 1,01							He
	3 1,0	4 1,5	5 2,0	6 2,5	7 3,0	8 3,5	9 4,0	10
2	Li	Be	B	\mathbf{C}	N	\mathbf{O}	$ \mathbf{F} $	Ne
	6,94	9,01	10,81	12,01	14,01	16,00	19,00	20,18
	11 0,9	12 1,2	13 1,5	14 1,8	15 2,1	16 2,5	17 3,0	18
3	Na 22,99	Mg 24,31	Al 26,98	Si 28,09	P 30,97	S 32,07	Cl 35,45	Ar 39,95
	19 0,8	20 1,0	31 1,6	32 1,8	33 2,0	34 2,4	35 2,8	36
4	K	Ca	Ga	Ge	As	Se	Br	Kr
	39,10	40,08	69,72	72,60	74,92	78,96	79,90	83,80

Par Gaëlle Dintilhac, Sandrine Lenoir, Véronique Lonnay, Liliane Merciny, René Cahay, Jacques Furnémont et Damien Granatorowicz.

A. CULTURE GENERALE ET SCIENTIFIQUE

1. a)(5 pts) Attribuez à chaque aliment la molécule qu'il contient. Indiquez la lettre correspondante.

10 pts

	<u>Aliment</u>			
A	Boisson énergisante			
В	Miel			
С	Soda zéro sucre			
D	Vinaigre			
Е	Caramel			

<u>Molécule</u>				
Aspartame				
Taurine				
Saccharose				
Fructose				
Acide acétique				

b)(5 pts) Pour chaque proposition, indiquez d'une croix s'il s'agit d'un phénomène physique ou chimique.

<u>Phénomène</u>	<u>Physique</u>	<u>Chimique</u>
L'échauffement des pneus d'une voiture		
La combustion d'une bougie		
Un coup de tonnerre		
La compression du gaz contenu dans une pompe à chaleur		
La dissolution d'un comprimé effervescent		

B. TABLEAU PERIODIQUE - STRUCTURE DE L'ATOME - ISOTOPES

2. Indiquez la configuration électronique des éléments suivants et proposez, si cela est possible, un ion stable qu'ils peuvent former.

10 pts

<u>Eléments</u>	Configuration électronique	<u>Ion stable</u>
Un alcalin de la 4ème période	KLN	
Un alcalino-terreux de la 3ème période	KLN	
Un halogène de la 2ème période	KNN	
Un gaz rare de la même période que le phosphore	KNN	
Un élément appartenant à la même famille que l'oxygène et à la même période que le magnésium	KNN	

3. Entourez la bonne réponse. Les couches électroniques d'un atome :

4 pts

- 1) Peuvent contenir au maximum deux électrons.
- 2) Peuvent contenir un nombre infini d'électrons.
- 3) Contiennent toutes le même nombre d'électrons.
- 4) Ne peuvent contenir qu'un nombre limité d'électrons, le nombre maximal d'électrons dépendant de la couche.

5 pts

Le bore naturel est un mélange de deux isotopes, le ¹⁰B et ¹¹B dont les masses atomiques sont respectivement 10,013 et 11,009. La masse atomique moyenne de l'élément bore est égale à 10,811. Quelle est le pourcentage de ¹⁰B au sein du bore naturel. Entourez la bonne réponse.

- 1) 80 %.
- 2) 7,98 %.
- 3) 20 %.

- 4) 1,98 %.
- 5) 10 %.

C. NOMENCLATURE - EQUATIONS

5. Donnez le nom systématique (selon la nomenclature chimique) des minéraux suivants :

5 pts

<u>Minéraux</u>	Nom systématique
Blende (ZnS)	
Célestine (SrSO ₄)	
Fluorine (CaF ₂)	
Cuprite (Cu ₂ O)	
Calcite (CaCO ₃)	

6. Pondérez (équilibrez) les équations suivantes :

6 pts

 $c)_{(1\;pt)} \qquad \qquad NH_3(g) \qquad \qquad + \qquad O_2(g) \qquad \qquad \rightarrow \qquad NO(g) \qquad \qquad + \qquad H_2O(g)$

Complétez et pondérez (équilibrez) les équations suivantes :

C. STRUCTURE MOLECULAIRE

7.

Complétez le tableau suivant (indiquez la géométrie et indiquez par une croix le caractère polaire ou apolaire de la substance) :

10 pts

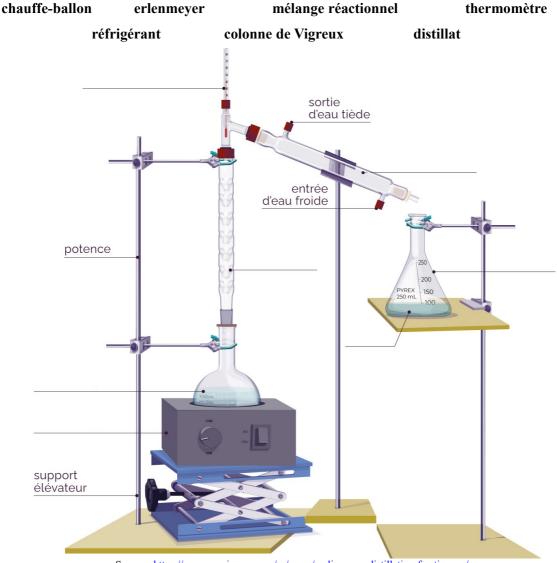
<u>Molécule</u>	<u>Géométrie</u>	<u>Polaire</u>	<u>Apolaire</u>
NH ₃			
SiF ₄			
SO_2			
BF ₃			
CO ₂			

8.		_	_	eux comportan	it au moins une	e liaison ionique ?
<u></u>	Entourez les	bonnes réponses.				
5 pts	1)	KBr.	2)	CO_2 .	3)	MgO.
	4)	PH_3 .	5)	CaCl ₂ .		
9.		otal d'électrons de bonne réponse.	e valence du 1	nitrite d'hydro	gène (HNO ₂) e	est égal à :
5 pts	1)	12.	2)	14.	3)	18.
	4)	22.	5)	47.		
	F. QUAN	TITES DE MA	ATIERE –	<u>STEOCHI</u>	<u>OMETRIE</u>	
10. 5 pts	chlorate de blanche, du	potassium (KClochlorure de potass	D ₃). Lors de sium (KCl).	la réaction,	on observe la	ser à haute température du formation d'une substance
	a)(2 pts) Ecriv	ez l'équation équ	ilibrée (pond	érée) de la réa	ction.	
	<u>Equa</u>	tion:				
						nolécules de réactif doit-on valeur de 6.10 ²³ .)
	1)	1.10^{23} .	2)	6.10^{23} .	3)	54.10^{23} .
	4)	24.10^{23} .	5)	36.10^{23} .		
		bstances suivante bonne réponse.	s, laquelle pr	ésente le pour	centage en mas	sse d'azote le plus élevé ?
5 pts	1)	LiNO ₃ .	2)	NaNO ₃ .	3)	$(NH_4)NO_3$.
	4)	$Mg(NO_3)_2$.	5)	$Ca(NO_3)_2$.		
12. 5 pts	en hydroxyd	•	OH) pour que		-	e concentration 0,1 mol/dmion obtenue soit égale à 0,02
	1)	200 cm ³ .	2)	2000 cm ³ .	3)	1500 cm ³ .
	4)	2500 cm ³ .	5)	500 cm ³ .		
13.	-	erature de 0°C et s nature de ce gaz	_			ccupent 2,54 L.
5 pts	1)	CO_2 .	2)	N_2 .	3)	CO.
	4)	H_2 .	5)	Cl_2 .		

5 pts

L'hémoglobine est une macromolécule complexe composée de quatre sous-unités protéiques appelées « hèmes ». Chaque hème contient un cation de fer(II) (Fe²⁺) qui est responsable du transport du dioxygène dans le sang. Sachant que le pourcentage en masse de fer au sein d'une molécule d'hémoglobine est d'environ 0,345 %, déterminez la masse molaire de l'hémoglobine. Entourez la bonne réponse.

 $(A_r \text{ Fe} = 56 \text{ g/mol}).$


- 1) +/- 645 g/mol. 2) +/- 6450 g/mol. 3) +/- 3225 g/mol.
- 5) +/- 64500 g/mol. +/- 16125 g/mol. 4)

Н. **ANALYSE DE DOCUMENTS**

7 pts

15. La distillation fractionnée est une technique qui consiste à porter à ébullition un mélange de liquides de températures d'ébullition différentes afin de les séparer. Le mélange réactionnel est placé dans un ballon que l'on chauffe à l'aide d'un chauffe-ballon. La substance chimique qui possède la température d'ébullition la plus faible est la première à s'évaporer et ses vapeurs vont passer à travers une colonne de Vigreux pour ensuite se condenser sur les parois froides du réfrigérant à eau. Une fois condensées ces vapeurs se récoltent sous forme liquide dans un erlenmeyer. Le liquide récupéré est donc celui qui est le plus volatil : il s'appelle le distillat.

Un exemple de montage est proposé ci-dessous. Annotez celui-ci en indiquant les éléments qui composent le dispositif.

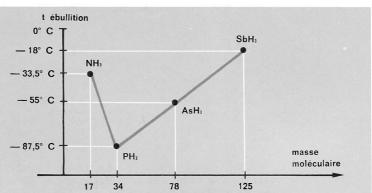
Source: https://www.maxicours.com/se/cours/realiser-une-distillation-fractionnee/

16. Soit 5 tubes à essais contenant chacun une solution aqueuse concentrée d'un des composés suivants : CaCl₂, CuSO₄, FeCl₃, HCl, NaOH.

En faisant réagir 2 à 2 ces solutions, on obtient les résultats repris dans le tableau ci-dessous.

	<u>Tube 1</u>	Tube 2	Tube 3	Tube 4	Tube 5
Tube 1		précipité bleu	rien	précipité blanc	rien
Tube 2	précipité bleu		rien	précipité blanc	précipité rouille
Tube 3	rien	rien		rien	rien
Tube 4	précipité blanc	précipité blanc	rien		rien
Tube 5	rien	précipité rouille	rien	rien	

En vous aidant du tableau des solubilités ci-joint, attribuez à chaque tube la solution qu'il contient :


	<u>Solution</u>
Tube 1	
Tube 2	
Tube 3	
Tube 4	
Tube 5	

Composés	<u>Soluble</u>	<u>Insoluble</u>
CaSO ₄		X
Ca(OH) ₂		X
CuCl ₂	X	
Cu(OH) ₂		X
Fe ₂ (SO ₄) ₃	X	
Fe(OH) ₃		X

17. Le graphique ci-dessous décrit l'évolution de la température d'ébullition de composés de la famille des azotides.

3 pts

5 pts

Source: chimie 4; Willems et Lecocq; collection 'in rerum natura'; Ed. H Dessain

- a)(1 pt) A température ambiante (20°C), dans quel état physique se trouvent les substances concernées ? Entourez la bonne réponse.
 - 1) Gaz.
- 2) Liquide.
- 3) Solide.
- b)(1 pt) Parmi ces substances, laquelle est la plus aisément liquéfiable?

Réponse:.....

- $c)_{(1\;pt)} \quad \text{Comment expliquer l'anomalie de comportement de NH}_3? \; \text{Entourez la bonne réponse}.$
 - 1) N est plus léger que P, As et Sb.
 - 2) N est plus électronégatif que P, As et Sb (X Sb = 1.9).

BROUILLON

