OLYMPIADE FRANCOPHONE DE CHIMIE 2017¹

1^{ère} épreuve - NIVEAU II (élèves de 6^{ème})

R. CAHAY, S. CAUBERGH, S. DAMMICCO, L. DEMARET, R. FRANCOIS, J. FURNEMONT, T. JUNGERS, G. KAISIN, V. LONNAY, A. MAREE, L. MERCINY, C. MALHERBE, M. HUSQUINET-PETIT, T. ROBERT, C. WARNIER

377 élèves de sixième année se sont inscrits au niveau 2 pour présenter la première épreuve dans leur école, les copies étant corrigées par leur professeur. C'est une quarantaine d'élèves inscrits de moins qu'en 2016 (417) ; toutefois, nous avons reçu les résultats de 331 élèves, soit 17 de plus qu'en 2016 (314).

L'épreuve était notée sur 100 points et les élèves devaient, en 2 h, répondre à 18 questions n'abordant ni l'oxydoréduction ni le pH. Les élèves pouvaient utiliser une machine à calculer non programmable et avaient à leur disposition les valeurs de quelques constantes physiques, ainsi qu'un tableau périodique.

Les moyennes obtenues aux différentes questions ont été les suivantes :

n°Question	I	II	III	IV	V	VI	VII	VIII	IX	X
Barème	6	4	8	6	10	4	6	4	6	5
Moyennes	3,26	2,25	5,96	3,59	5,82	1,41	3,67	2,68	2,45	3,43
%	54,3	56,2	75,5	59,8	58,2	35,2	61,2	67,0	40,8	68,6

n°Question	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	Total
Barème	5	6	5	5	6	4	6	4	100
Moyennes	3,46	3,38	1,97	2,55	1,81	2,91	2,94	2,22	55,75
%	69,2	56,3	39,4	51,0	30,2	72,7	49,0	55,5	55,8

La moyenne obtenue a été de **55,8** % soit environ 10 % en plus que celle obtenue en 2016 (44,6 %), un résultat plus qu'encourageant !

L'histogramme des résultats ci-contre montre que les pics se situent entre de 41 à 70 % des points et comprennent 220 élèves sur les 331 qui ont participé à l'épreuve.

-

¹ Organisée par l'Association des Chimistes de l'Université de Liège (ACLg), avec le soutien de la Politique Scientifique Fédérale ; la Communauté Française de Belgique ; la Communauté Germanophone de Belgique ; la Région Bruxelloise ; les Universités francophones ; l'Association des Chimistes de Louvain, la Société Royale de Chimie ; Co-Valent ; essenscia Wallonie ; essenscia Bruxelles ; Prayon S.A.; UCB Pharma ; Solvay ; les Éditions De Boeck, Larcier, Tondeur ; Le Soir.

Les élèves qui ont obtenu 62 % et plus, ainsi que les 13 lauréats des épreuves de 5ème en 2016, soit au total 125 élèves ont été invités à présenter la deuxième épreuve. 100 élèves se sont présentés.

L'examen des résultats appelle les commentaires suivants.

- Deux questions ont obtenu plus de 70 % :
 QIII / 74,5 % (Les métaux dans la vie courante) ;
 QXVI / 72,7 % (Solubilité du dioxygène ; lecture de graphique) ;
- 4 questions ont donné des résultats nettement suffisants :
 QXI / 69,2 % (Propriétés d'un catalyseur) ;
 QX /68,6 % (Cinétique chimique ; analyse de graphiques) ;
 QVIII / 67,0 % (Email des dents ; déplacement d'équilibre) ;
 QVII / 61,25 % (Solubilité du Cu(OH)₂) ;
- 7 questions ont donné des résultats suffisants :
 QIV / 59,8 % (Acétylène, enthalpie, pondération d'équations)
 QXII / 58,3 % (Déplacement d'équilibres);
 QV / 58,2 % (Aspirine, fonctions, équilibre);
 QII / 56,3 % (Sous-produits de la combustion du charbon);
 QXVIII / 55,5 % (Formule générale d'un acide carboxylique);
 QI / 54,3 % (Gaz parfait);
 QXIV / 51,0 % (Constante d'équilibre).

- Une question a obtenu près de la moitié des points : QXVII / 49,0 % (Combustion des alcanes et gaz parfait)
- Les résultats aux quatre autres questions étaient mauvais :

QIX / 40,8 % (Isomérie);

QXIII / 39,4 % (Acide nitrique, équilibre chimique);

QVI / 35,2 % (Géométrie des molécules);

QXV / 30,2 % (Ballon sonde ; lecture de graphiques)

Si la cinétique, la solubilité, les déplacements d'équilibre semblent assez bien maîtrisés, ce n'est pas tout à fait le cas de la thermochimie ni de la question relative à la production d'acide nitrique.

Les résultats aux questions faisant intervenir la lecture de graphiques sont un peu contradictoires quand on voit que la question sur le ballon sonde n'obtient que 30,2 %. Par ailleurs, est-ce que le mauvais résultat à la question sur la géométrie des molécules ne serait pas dû au type de question posé ? D'où, l'importance de varier la formulation des questions.

Nous remercions chaleureusement les professeurs qui ont corrigé cette épreuve, contribuant cette année encore au succès de l'Olympiade de chimie.

OLYMPIADE FRANCOPHONE DE CHIMIE 2017

NIVEAU 2 (élèves de sixième année) - PREMIÈRE ÉPREUVE : QUESTIONS

ACLa	NOM:
Association des Chimistes	Prénom:
de l'ULg	

6 pts	QUESTION I – Gaz parfait ²
	Soit les gaz suivants, tous à l'état pur et idéal, à 273 K et sous une pression de 1 atmosphère
	(101325 Pa):
	Monoxyde d'azote
	Dichlore
	• Argon
	Dihydrogène
	Dioxygène
	1) Classer ces gaz par ordre de masse volumique croissante en précisant leur formule
	chimique
4	
(si tout	
juste)	2) Que deviendra la masse volumique de ces gaz si la température est portée à 819 K ?
	a) Elle triplera
	b) Elle ne changera pas
2	c) Elle diminuera d'un facteur 3
	Entourer la honne réponse.

QUESTION II - Sous-produits de la combustion du charbon³ 4 pts La combustion du charbon dans les centrales thermiques entraîne souvent la production de dioxyde de soufre à partir des impuretés du charbon contenant l'élément soufre. Pour éviter les émanations de dioxyde de soufre, du carbonate de calcium peut être mélangé au charbon avant combustion. Les produits chimiques qui se forment dans la chambre de combustion comprennent alors notamment du sulfate de calcium. Les équations-bilans logiques (non équilibrées, non pondérées) qui pourraient avoir lieu sont : $S + O_2 \rightarrow A$ $CaCO_3 \rightarrow B + CO_2$ $A + O_2 \rightarrow C$ $B + C \rightarrow D$ Rendre à chaque lettre la formule chimique du composé correspondant. $\mathbf{C} =$ B =D =A =4x1

³ Adapté de la question 21 des Olympiades francophones de Belgique de 1994.

² Adapté de la question 3 des Olympiades francophones de Belgique de 2014.

8 pts	QUESTION II	1- Les me	taux dans	la vie cour	<u>ante</u>			
	On trouve ci-de	ssous quel	lques prop	riétés des m	étaux sui	vants:		
	aluminium	cuivre	fer	lithium	or	silicium	ne zinc	
	Noter le symbol	e chimiqu	e du méta	l qui corresp	ond le m	ieux à la de	scription.	
]	Descriptio	on et propri	étés			Symbole du métal
	Métal gris argen dans les constru l'air humide							
	Métal gris constituant essentiel des piles alcalines et Leclanché, utilisé aussi dans la fabrication des gouttières							
	Métal rouge-ora d'eau ; se recou						tuyaux	
	Métal jaune bril ("état natif") ; u				à l'état p	ur dans la na	ture	
8x1pt	Métal blanc arge l'emballage alin				ıtilisé en a	aéronautique,	dans	
	Métal gris ; on l							
	photovoltaïques							
	Métal gris foncé	•		•			•	
	électriques à fila							
	Métal mou, blan léger utilisé dan							
	comme régulate			nuraicurs (bai	icrics). Sc	es seis soilt u	unses	
	comme regulate	urs de i na	mear.					
6 pts	QUESTION IV							
	L'acétylène, dont							
	combustible, nota							
	de calcium CaC ₂ (action est acc	compagné	e d'une varia	ition d'entl	nalpie $\Delta H = -$
	130 kJ pour une			antion da 19	44.13 (4	(thrma)	śanna 11	n awaka 49
	1) Écrire et ponde	erer i equat	ion de iorn	nation de l'ac	etylene (e	einyne) en pro	esence d'u	n exces a eau:

	L'acétylène, dont le nom systématique est l'éthyne, est un gaz, de formule C ₂ H ₂ , utilisé comme combustible, notamment par les spéléologues et les soudeurs. On le produit par réaction du carbure							
	de calcium $CaC_2(s)$ avec l'eau. Cette réaction est accompagnée d'une variation d'enthalpie $\Delta H=$ -							
	130 kJ pour une mole d'acétylène.							
	1) Écrire et pondérer l'équation de formation de l'acétylène (éthyne) en présence d'un excès d'eau :							
1								
		15. 1 11 2	15					
	2) Écrire et pondérer l'équation de combustion supposée comp	lete de l'acet	ylene.					
1								
1	2) Pour chouse des monocitions suiventes entermente nécesses							
	3) Pour chacune des propositions suivantes, entourer la réponse a) L'hydrolyse du carbure de calcium est		iaua	ar ath ammi au a				
		endothern	-	exothermique				
	b) Après réaction, l'eau en excès est	acide		basique				
	c) Après réaction, l'eau en excès est	plus cha	ude	plus froide				
4x1pt	d) Lors de la combustion de l'acétylène, la variation	positive	négativ	e nulle				
	d'enthalpie est							

10 pts							
	L'aspirine est le nom commercial d'une substance dont la forn	nule est :					
	O						
	, C						
	OH						
	Ç						
	CH ₃						
	1) Les groupements fonctionnels suivants sont présents dans l	7	irine :				
	a) alcool	Vrai	Faux				
Ev.1n4	b) acide	Vrai	Faux				
5x1pt	c) aldéhyde	Vrai	Faux				
	d) ester	Vrai	Faux				
	e) cétone	Vrai	Faux				
	Entourer la bonne réponse						
	Emourer to bonne reponse						
	Si l'on représente cette substance par HA, sa dissociation parti	elle en solution a	aqueuse suit la				
	réaction limitée à un équilibre :						
	$HA(aq) + H_2O(1) \rightleftharpoons A^{-}(aq) + H_3O^{+}$	(aq) (1)					
	2) On peut dire de cette substance que :						
	a) c'est un électrolyte faible						
2.5	b) c'est un électrolyte fort						
	c) ce n'est pas un électrolyte.						
	Entourer la bonne réponse						
	Emourer to bonne reponse						
	3) Dans l'estomac, l'aspirine rencontre le suc gastrique, un n	nilieu à caractère	très acide pendant	la			
	digestion. L'équilibre (1) sera donc :						
	a) déplacé sur la droite						
2.5	b) déplacé vers la gauche						
4.5	c) ne sera pas modifié						
	Entourer la bonne réponse						

4 pts	QUESTION VI - Géométrie des molécules ⁵
	Déterminer la configuration (géométrie) correcte (de gauche à droite) autour de chaque atome intérieur dans la molécule CH ₃ CH ₂ OH.
4	a) 1 ^{er} C : tétraédrique ; 2 ^{ème} C : triangulaire ; O : linéaire b) 1 ^{er} C : triangulaire plane ; 2 ^{ème} C : coudée ; O : linéaire c) 1 ^{er} C : triangulaire plane ; 2 ^{ème} C : triangulaire pyramidale ; O : coudée d) 1 ^{er} C : tétraédrique ; 2 ^{ème} C : tétraédrique ; O : coudée Entourer la bonne réponse

⁴ Adapté de la question 14 des Olympiades francophones de Belgique de 2011.
⁵ Nivaldo J. TRO, Chemistry, A Molecular Approach, 3ème édit.Pearson, International Edition, question Q14, page 472

ACLg — Olympiades de Chimie — 6ème - 2017 - 6

6 pts	QUESTION VII - Solubilité de l'hydroxyde de cuivre (II) ⁶							
	a) Dès qu'on verse une goutte de solution aqueuse d'hydroxyde de sodium dans	une solution	on					
	aqueuse de sulfate de cuivre (II), la réaction de précipitation suivante a lieu :							
	$Cu^{2+}(aq) + 2 OH^{-}(aq) \rightarrow Cu(OH)_2(s)$ (quasi-totale, quantitative)							
	L'hydroxyde de cuivre est très soluble dans l'eau.	Vrai	Faux					
	b) On mélange alors 0,03 mol d'ions Cu ²⁺ et 0,03 mol d'ions OH ⁻ .							
	Le mélange initial est stœchiométrique.	Vrai	Faux					
6x1pt	Il apparaît 0,03 mol d'hydroxyde de cuivre (II).	Vrai	Faux					
	Tous les ions Cu ²⁺ réagissent.	Vrai	Faux					
	Il y aura apparition d'un précipité d'hydroxyde de cuivre (I)	Vrai	Faux					
	Tous les ions OH réagissent.	Vrai	Faux					
	Entourer les bonnes réponses.							

4 pts | QUESTION VIII - Email des dents⁷

L'émail des dents est composé essentiellement d'hydroxyapatite, un hydroxyphosphate de calcium répondant à la formule $Ca_5(PO_4)_3OH$. Dans la bouche, la formation et la décomposition de l'hydroxyapatite donnent lieu à un équilibre que l'on peut représenter par l'équation :

Déminéralisation

$$Ca_5(PO_4)_3OH(s) \rightleftharpoons 5 Ca^{2+}(aq) + 3 PO_4^{3-}(aq) + OH(aq) (1)$$
Reminéralisation

La formation d'acides (acétique et lactique notamment) sous l'action de certaines bactéries peut entrainer un déplacement de l'équilibre (1) favorisant l'apparition de caries.

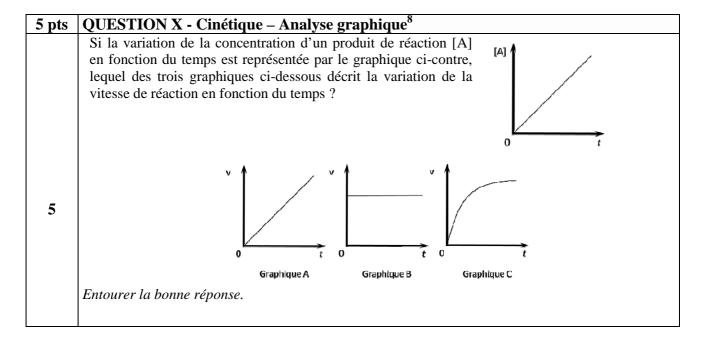
On ajoute à certains dentifrices de faibles quantités de fluorure de sodium ou de fluorure de calcium car les ions fluorure sont supposés assurer une protection des dents. En effet, il se formerait de la fluoroapatite dont la solubilité dans l'eau est plus faible que celle de l'hydroxyapatite.

L'équation correspondant à ce processus est :

$$Ca_5(PO_4)_3OH(s) + F(aq) \rightleftharpoons Ca_5(PO_4)_3F(s) + OH(aq)$$
 (2)

Si on augmente les concentrations suivantes $c(H_3O^+)$, $c(Na^+)$, $c(F^-)$, $c(Ca^{2+})$, l'émail des dents sera-t-il protégé ou non?

Concentration	Émail	Émail attaqué	Aucun effet
élevée en	protégé		
H_3O^+			
Na ⁺			
F ⁻			
Ca ²⁺			


4x1pt

Cocher les cases correspondant aux bonnes réponses

⁷ Adapté de la question 11 des Olympiades francophones de Belgique de 2006.

⁶ M. SONNEVILLE et J. MAUREL, "Groupe Lycée-Post-baccalauréats", Bull. Union des Physiciens, 92, p. 240, 1998.

6 pts	QUESTION IX - Isomérie
6 pts	QUESTION IX - Isomérie Le composé ci-dessous : CH2 H3C C CH3 H2 H2 a) Est un stéréoisomère Z b) Est le 3-éthylbut-3-ène c) Est un stéréoisomère E d) Est le 2-éthylbut-1-ène e) Ne présente pas de stéréoisomérie Z/E Entourer la(les) bonne(s) réponse(s)

⁸ Adapté de la question 5 des Olympiades francophones de Belgique de 2004.

5 pts	QUESTION XI - Les propriétés d'un catalyseur ⁹		
5x1pt	Un catalyseur a) N'intervient pas dans le bilan global de la réaction b) Fournit un mécanisme alternatif à la réaction c) Modifie la vitesse de la réaction d) Doit nécessairement avoir le même état d'agrégation que le réactif pour être efficace e) Améliore le rendement de la réaction Entourer la bonne réponse	Vrai Vrai Vrai Vrai Vrai	Faux Faux Faux Faux Faux

6 pts

QUESTION XII- Déplacement d'équilibre¹⁰
Pour chacune des réactions suivantes limitées à un équilibre chimique, prévoir l'effet :

- i) d'une diminution de la température du système ;
- ii) d'une augmentation de la pression totale du système

N.B. Les équations sont équilibrées (pondérées).

- a) $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(l)$; la réaction est endothermique de la gauche vers la droite.
- b) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$; la constante K_c de décomposition vaut : 2,30.10⁻⁵ à 1000 K et 1,14.10⁻⁴ à 1100 K

c) 2 NO(g) \Rightarrow N₂(g) + O₂(g) ; la réaction est end<u>othermique de la droite vers la gauche.</u>

		Réaction a)	Réaction b)	Réaction c)
Diminution de	Il y a déplacement de			
la température	l'équilibre vers la droite			
	Il y a déplacement de			
	l'équilibre vers la gauche			
	Il n'y a pas de déplacement			
Augmentation	Il y a déplacement de			
de la pression	l'équilibre vers la droite			
totale	Il y a déplacement de			
	l'équilibre vers la gauche			
	Il n'y a pas de déplacement			

6x1pt

Mettre une croix dans les cases correspondant aux bonnes réponses.

 ⁹⁽Nivaldo J. TRO, Chemistry, A Molecular Approach, 3ème édit. Pearson, International Edition, question 2 page 633)
 10 Adapté de la question 10 des Olympiades francophones de Belgique de 1993.

5 pts	QUESTION	XIV-Constantes	d'équilibre ¹²

Dans des tables, un étudiant trouve les constantes d'équilibre K_1 et K_2 relatives aux deux réactions ciaprès, limitées à un équilibre chimique :

$$\frac{1}{2} N_2(g) + O_2(g) \rightleftharpoons NO_2(g)$$
 K
 $2 NO_2(g) \rightleftharpoons N_2O_4(g)$ K₂

Désireux de connaître K, la constante d'équilibre relative à la réaction :

$$N_2O_4(g) = N_2(g) + 2 O_2(g)$$

5

5

Il hésite entre les expressions suivantes, laquelle est correcte?

a)
$$K=K_1\times K_2$$
 b) $K=(K_1)^2\times K_2$ c) $K=K_1\times (K_2)^2$ d) $K=\frac{1}{K_2\times (K_2)^2}$ e) $K=\frac{1}{(K_1)^2\times K_2}$

5 pts QUESTION XIII - Production industrielle de l'acide nitrique¹¹

La première étape dans la production de l'acide nitrique implique la réaction entre l'ammoniac et le dioxygène de l'air en utilisant un catalyseur à base de platine à une température de 900 °C. L'équation correspondant à la réaction chimique qui se produit dans ces conditions est :

$$4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightleftharpoons 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)$$

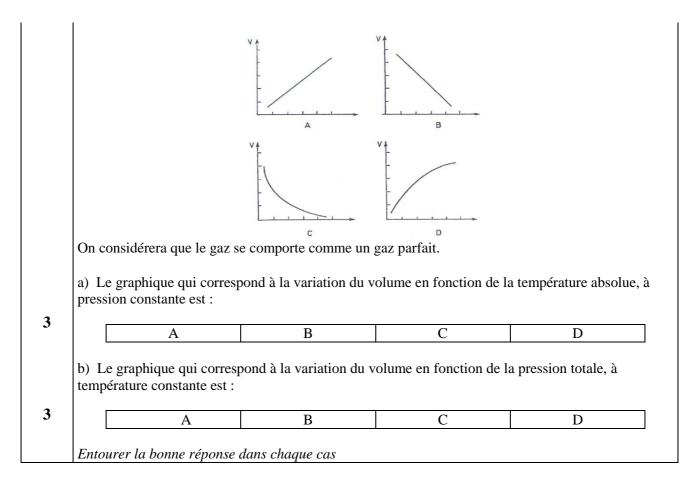
Cette réaction, exothermique, est limitée à un équilibre chimique. Quel(s) action(s) permet(tent) d'augmenter le rendement en monoxyde d'azote ?

- a) Augmenter la pression totale
- b) Augmenter la température
- c) Opérer la réaction sans catalyseur
- d) Ajouter du diazote au mélange réactionnel
- e) Condenser l'eau

Entourer la(les) bonne(s) réponse(s)

6 pts QUESTION XV - Ballon sonde – Lecture de graphiques¹³

Lorsqu'on envoie un ballon sonde à paroi souple dans l'atmosphère, son volume varie en fonction de l'altitude. Cette variation provient, d'une part, de la diminution de la température et, d'autre part, de la diminution de la pression atmosphérique. Il est évidemment important de savoir comment varie le volume du ballon.


On trouve ci-après une série de graphiques:

¹² Olympiades des sciences (Australie) – Examen de qualification en chimie 1996

¹³ Adapté de la question 12 des Olympiades francophones de Belgique de 1994.

ACLg – Olympiades de Chimie – 6^{ème} - 2017 - 10

¹¹ Examen national de chimie 2003 pour les écoles secondaires du Canada

4 pts QUESTION XVI -Solubilité du dioxygène¹⁴

Sur base du graphique ci-dessous donnant la teneur en dioxygène dissous dans l'eau en fonction de la température et de l'altitude, répondre par vrai ou faux aux affirmations suivantes :

augmente. b) La solubilité du dioxygène dans l'eau aug

b) La solubilité du dioxygène dans l'eau augmente avec la diminution de la pression atmosphérique (lorsque l'altitude augmente).

a) La solubilité du dioxygène dans l'eau diminue lorsque la température

- c) La dissolution du dioxygène dans l'eau est endothermique.
- d) La solubilité du dioxygène au niveau de la mer à 10 °C est de 10 mg L⁻¹.

Vrai	Faux
Vrai	Faux
Vrai	Faux
Vrai	Faux

Entourer la bonne réponse

_

4x1pt

¹⁴ Adapté de la question 4 des Olympiades francophones de Belgique de 2010.

gare et celui e piste.
e piste.
C ₁₂ , écrire
t où l'avion

4 pts	QUESTION XVIII-Acide carboxylique		
	La formule générale d'un acide carboxylique saturé est :		
	a) $C_nH_{2n}O$		
4	b) $C_nH_{2n+1}O_2$		
	c) $C_nH_{2n+2}O_2$		
	d) $C_nH_{2n}O_2$		
	e) $C_nH_{2n+1}O$		
	Entourer la bonne réponse		

_

 $^{^{\}rm 15}$ Adapté de la question 15 des Olympia des francophones de Belgique de 1992.

OLYMPIADE FRANCOPHONE DE CHIMIE 2017 NIVEAU 2 (élèves de sixième année) - PREMIÈRE ÉPREUVE : Réponses

6 pts	QUESTION I – Gaz parfait					
	1) Classement	des gaz par ord	re de masse vo	lumique croissa	nte en précisant	leur
4 ou 0 formule chimique						
(tout ou rien)	Cl ₂					
2	2) c) elle dimin	uera d'un facte	ur 3			

4 pts	QUESTION II - Sous-produits de la combustion du charbon				
4x1pt	$A = SO_2$	B = CaO	$C = SO_3$	$D = CaSO_4$	
4x1pt					

8 pts	QUESTION III - Les métaux dans la vie courante		
	Description et propriétés	Métal	
	Métal gris argenté attiré par un aimant, constituant principal de l'acier, utilisé dans les constructions métalliques, les clous, les boîtes de conserve, rouille à l'air humide	Fe	
	Métal gris constituant essentiel des piles alcalines et Leclanché, utilisé aussi dans la fabrication des gouttières	Zn	
	Métal rouge-orangé utilisé dans les fils électriques, en plomberie dans les tuyaux d'eau ; se recouvre au cours du temps d'une couche de "vert-degris"	Cu	
	Métal jaune brillant que l'on trouve uniquement à l'état pur dans la nature ("état natif") ; utilisé comme métal précieux	Au	
014	Métal blanc argenté à l'aspect brillant, peu dense, utilisé en aéronautique, dans l'emballage alimentaire, les ustensiles de cuisine	Al	
8x1pt	Métal gris ; on le trouve sous forme d'élément dans les panneaux photovoltaïques, les silicones ; son dioxyde constitue le sable	Si	
	Métal gris foncé, possédant un très haut point de fusion, utilisé dans les ampoules électriques à filament (remplacées par des ampoules dites à basse énergie)	W	
	Métal mou, blanc argenté qui réagit facilement avec l'air et l'eau ; métal très léger utilisé dans les piles et les accumulateurs (batteries). Ses sels sont utilisés comme régulateurs de l'humeur.	Li	

6 pts	QUESTION IV - Acétylène			
	1) Équation de formation de l'acétylène			
1	$CaC_2 + 2 H_2O \rightarrow C_2H_2 + Ca(O)$	H) ₂		
	2) Équation de combustion de l'acétylène			
	$C_2H_2 + 5/2 O_2 \rightarrow 2 CO_2 + H$	I_2 O		
	ou			
1	$2 C_2H_2 + 5 O_2 \rightarrow 4 CO_2 + 2 I$	H_2O		
	3) Pour chacune des propositions suivantes, la réponse correcte est :			
	a) L'hydrolyse du carbure de calcium est	exothermique		
4x1pt	b) Après réaction, l'eau en excès est	basique		
_	c) Après réaction, l'eau en excès est	plus chaude		
	d) Lors de la combustion, la variation d'enthalpie est	négative		

10 pts	QUESTION V - Aspirine	
5x1pt	1) Les groupements fonctionnels présents dans la molécule a) alcool b) acide c) aldéhyde d) ester e) cétone	d'aspirine sont : Faux Vrai Faux Vrai Faux Faux
2.5	2) a) c'est un électrolyte faible	
2.5	3) b) déplacé vers la gauche	

4 pts	QUESTION VI - Géométrie des molécules
4	La configuration correcte est : d) 1 er C : tétraédrique ; 2 ème C : tétraédrique ; O : coudée

6 pts	QUESTION VII - Solubilité de l'hydroxyde de cuivre (II)	
	a) L'hydroxyde de cuivre est très soluble dans l'eau.	Faux
6x1pt	 b) Le mélange initial est stœchiométrique. c) Il apparaît 0,03 mol d'hydroxyde de cuivre (II). d) Tous les ions Cu²⁺ réagissent. e) Il y aura apparition d'un précipité d'hydroxyde de cuivre (I) f) Tous les ions OH⁻ réagissent. 	Faux Faux Faux Faux Vrai

4 pts	QUESTION VIII - Email des dents				
		Concentration élevée en	Protégé	Attaqué	Aucun effet
		H_3O^+		X	
4x1pt		Na ⁺			X
татрі		F ⁻	X		
		Ca ²⁺	X		

6 pts	QUESTION IX - Isomérie	
2x3pts (-2/mauvaises réponses avec min. 0 à la question)	 d) Est le 2-éthylbut-1-ène e) Ne présente pas de stéréoisomérie Z/E 	$\begin{array}{c} CH_2 \\ \\ C \\ C \\ H_2 \end{array} \begin{array}{c} CH_3 \\ H_2 \end{array}$

5 pts	QUESTION X - Cinétique – Analyse graphique
5	Graphique B

5 pts	QUESTION XI - Les propriétés d'un catalyseur	
5x1pt	 a) N'intervient pas dans le bilan global de la réaction b) Fournit un mécanisme alternatif à la réaction c) Modifie la vitesse de la réaction d) Doit nécessairement avoir le même état d'agrégation que le réactif pour être efficace e) Améliore le rendement de la réaction 	Vrai Vrai Vrai Faux Faux

6 pts	QUESTION XII	- Déplacement d'équilibre			
			Réaction a)	Réaction b)	Réaction c)
	Diminution de	Il y a déplacement de			X
	la température	l'équation vers la droite			
6x1pt		Il y a déplacement de l'équation vers la gauche	X	x	
		Il n'y a pas de			
		déplacement			
	Augmentation	Il y a déplacement de	X		
	de la pression	l'équation vers la droite	A		
	totale	Il y a déplacement de			
		l'équation vers la gauche		X	
		Il n'y a pas de			v
		déplacement			X

5 pts	QUESTION XIII - Production industrielle de l'acide nitrique	
5 (-2 par mauvaise réponse avec min. 0 à la question)	e) Condenser l'eau	

5 pts	QUESTION XIV - Constantes d'équilibre
5	e) $K = \frac{1}{(K_1)^2 \times K_2}$

6pts	QUESTION XV - Ballon sonde – Lecture de graphiques
3	a) A
3	b) C

4 pts	QUESTION XVI - Solubilité du dioxygène	
	a) La solubilité du dioxygène dans l'eau diminue lorsque la température augmente.	Vrai
4x1pt	b) La solubilité du dioxygène dans l'eau augmente avec la diminution de la pression atmosphérique (lorsque l'altitude augmente).	Faux
	c) La dissolution du dioxygène dans l'eau est endothermique.	Faux
	d) La solubilité du dioxygène au niveau de la mer à 10 °C est de 10 mg L ⁻¹ .	Faux

	QUESTION XVII - Combustion alcane et gaz parfait
	1) Equation de combustion complète du carburant de l'avion.
2	$C_{12}H_{26} + 37/2 O_2 \rightarrow 12 CO_2 + 13 H_2O$
	Ou
	2 $C_{12}H_{26}$ + 37 O_2 →24 CO_2 + 26 H_2O
4	2) c) 2432 m ³

4 pts	QUESTION XVIII - Acide carboxylique
4	d) $C_nH_{2n}O_2$